
March 29, 2000 12:56 pm 1

The MIRV SimpleScalar/PISA Compiler

Matthew Postiff, David Greene, Charles Lefurgy, Dave Helder and Trevor Mudge
{postiffm,greened,lefurgy,dhelder,tnm}@eecs.umich.edu

EECS Department, University of Michigan
1301 Beal Ave., Ann Arbor, MI 48109-2122

Abstract

We introduce a new experimental C compiler in this report. The compiler, called MIRV, is
designed to enable research that explores the interaction between the compiler and
microarchitecture. This introductory paper makes comparisons between MIRV and GCC.
We notice trends between the compilers and optimization levels across SPECint1995 and
SPEC2000. Finally, we provide a set of SimpleScalar/PISA binaries to the research com-
munity. As we improve the compiler, we encourage architecture researchers to use these
optimized binaries as reference programs for architecture research.

1. Introduction

The design of computers in general and microprocessors in particular has shown a steady
increase in both performance and complexity. Advanced techniques such as pipelining and out-of-
order execution have increased the design and verification effort required to create a viable prod-
uct. To overcome some of these problems, hardware designers have been exploring ways to move
functionality into the compiler. From RISC to current designs such as Intel’s IA64, the compiler
has played a greater role in simplifying the hardware while maintaining the current trend of per-
formance improvement.

The MIRV compiler is designed to analyze trade-offs between compile-time and run-time
knowledge of program behavior. MIRV enables research into this area in four ways. First, the
compiler is built with a modular filter architecture. This allows the researcher to easily write opti-
mizations and explore their placement in the phase ordering. Second, the retargetable code gener-
ator and low-level optimizer support both commercially available microprocessors and the
popular SimpleScalar simulation environment. This allows both realistic performance evaluation
as well as explorations into next-generation computer instruction set architecture. Third, MIRV
provides an interface for program instrumentation and profile back-annotation. This allows stud-
ies into runtime behavior as well as profile-guided optimizations. Fourth, the compiler environ-
ment that we have developed around MIRV provides easy regression testing, debugging, and
extraction of performance characteristics of both the compiler and the compiled code.

In this report we introduce MIRV and compare its performance to the GCC compiler. This
report also introduces a package of SPEC binary executables which are compiled with GCC and
MIRV at various optimization levels. The purpose of this document is to explain the compilation
and simulation environment in which the binaries were produced and to summarize the perfor-
mance differences between the compiled code. Several notable results are presented.

The organization of the rest of this paper is as follows. Section 2 describes the compilation
environment that we used to generate the results shown. Similarly, Section 3 outlines the simula-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 MAR 2000 2. REPORT TYPE

3. DATES COVERED
 00-03-2000 to 00-03-2000

4. TITLE AND SUBTITLE
The MIRV SimpleScalar/PISA Compiler

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Michigan,Computer Science and Engineering
Division,Department of Electrical Engineering and Computer
Science,Ann Arbor,MI,48109-2122

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

March 29, 2000 12:56 pm 2

tion environment. Section 4 introduces the performance graphs shown in the appendices and Sec-
tion 5 describes some interesting observations made from the performance graphs. We conclude
with Section 6. The appendices contain detailed compilation and simulation results as well as pro-
vide additional detail on the optimizations that were performed during compilation.

2. Compilation Environment

We tested seven compiler configurations. The first is labeled ‘SSsup’ which is the Sim-
pleScalar supplied binary, available at the SimpleScalar web site [2]. The next three configura-
tions were compiled in our test environment with the GCC 2.7.2.3 port to the PISA instruction set.
This tool is available from UC-Davis [7]. We also used a pre-release version of binutils 2.9.5 for
the assembler and linker. These were slightly modified from sources at Cygnus [8]. The final
three configurations were compiled with MIRV and used the same assembler and linker as the
GCC builds.

The MIRV compiler implements the most common optimization passes. The exact order
of application of the optimzation filters is given in Table 4 in Appendix A. For comparison,
Appendix B contains the optimizations applied in the GCC compiler.

MIRV always applies register coalescing and graph coloring register allocation in the
backend, regardless of the optimization level. The allocator is implemented with the standard
graph coloring algorithm except that it does not implement live range splitting or rematerializa-
tion [3]. This means that it is not fair to compare GCC -O0 with mirv -O0 since GCC does not
perform register allocation at the -O0 optimization level.

3. Simulation Environment

The SimpleScalar 3.0 sim-outorder simulator was used with default parameters [4]. Table
1 shows the relevant default parameter values. All simulations were performed in little-endian
mode.

We used the SPEC95 integer benchmarks and several of the SPEC00 benchmarks [5, 6].
All benchmarks were run to completion on the data set indicated in the table; we modified the
supplied input sets to allow the simulations to complete in a reasonable amount of time (about 100
million instructions). The benchmarks are described in Table 2 and the exact input sets are shown
in Table 3.

4. SPEC Performance Graphs

The full set of graphs comparing MIRV to GCC can be found in Appendices C and D.
These graphs show various metrics for each of the eight SPEC95 benchmarks and selected
SPEC00 benchmarks. Table 6 explains each of the graphs and any special notes on how the data
was gathered. For the SPEC95 benchmarks, we include the PISA binary supplied on the SimpleS-
calar website [2] as a comparison point. These benchmarks were compiled with the arguments “-
O2 -funroll-loops”. There are no supplied binaries for SPEC00 benchmarks, so no information
appears for those in our graphs. The full set of results is attached in Appendix F.

March 29, 2000 12:56 pm 3

The only anomalous behavior we observed during simulations was in the vortex bench-
mark, where we discovered that the SimpleScalar supplied binary had been compiled with the flag
‘-DOPTIMIZE’. The GCC and MIRV binaries that we initially built were not compiled with this
flag because we did not know about it. The flag turns on various optimizations in the vortex code

SimpleScalar
parameter

Value

fetch queue size 4

fetch speed 1

decode, width 4

issue width 4 out-of-order, wrong-path issue included

commit width 4

RUU (window) size 16

LSQ 8

FUs alu:4, mult:1, memport:2, fpalu:4, fpmult:1

branch prediction 2048-entry table of 2-bit counters, 4-way 512-set BTB, 3 cycle extra mispre-
dict latency, non-speculative update, 8-entry return address stack

L1 D-cache 128-set, 4-way, 32-byte lines, LRU, 1-cycle hit, total of 16KB

L1 I-cache 512-set, direct-mapped 32-byte line, LRU, 1-cycle hit, total of 16KB

L2 unified cache 1024-set, 4-way, 64-byte line, 6-cycle hit, total of 256KB

memory latency 18 cycles for first chunk, 2 thereafter

memory width 8 bytes

Instruction TLB 16-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty

Data TLB 32-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty

Table 1. Simulation parameters for sim-outorder (the defaults).

Category Benchmark Description

SPECint95

compress A in-memory version of the common UNIX utility.

gcc Based on the GNU C compiler version 2.5.3.

go An internationally ranked go-playing program.

ijpeg Image compression/decompression on in-memory images.

li Xlisp interpreter.

m88ksim A chip simulator for the Motorola 88100 microprocessor.

perl An interpreter for the Perl language.

vortex An object oriented database.

SPECfp2000
art Recognizes objects in a thermal image using a neural network.

equake Simulation of seismic wave propagation in large basins.

SPECint2000

gzip Data compression program that uses Lempel-Ziv coding (LZ77) as
its compression algorithm.

mcf A benchmark derived from a program used for single-depot vehicle
scheduling in public mass transportation.

vortex A single-user object-oriented database transaction benchmark which
exercises a system kernel coded in integer C.

vpr Performs placement and routing in Field-Programmable Gate Arrays.

Table 2. Descriptions of the benchmarks used in this study.

March 29, 2000 12:56 pm 4

itself (it is a preprocessor directive). We added ‘-DOPTIMIZE’ to our simulations and the anom-
aly was solved.

5. Performance Observations

Several interesting observations can be made from the data shown in Appendices C and D.
These observations could fall into several categories which are examined in the following subsec-
tions. It is important to keep in mind the simulator configuration shown in Table 1.

5.1 Comparing MIRV to GCC

GCC has no register allocation in -O0. MIRV has graph coloring allocation and register
coalescing (simple copy propagation). Since GCC and MIRV unoptimized code is otherwise very
similar, we can use these two bars to show an estimate of the importance of register allocation.
For example, MIRV -O0 execution times are often 20% faster than GCC -O0 and sometimes
much faster. This benefit is solely due to register allocation. MIRV-O1 and -O2 performs a little
worse than GCC. This is borne out in the graphs on cycles and dynamic counts of instructions,
memory references and branches. The dynamic instruction mix graphs point out that MIRV is uni-
formly higher than GCC in all categories of instructions (Appendix E), particularly in memory
operations. When MIRV produces better code than GCC, it is often because it has reduced the
number of ‘other’ instructions (this happens in go, ijpeg, vortex, and vortex00).

The graphs show that dynamic instruction count is often a very good indication of the
number of cycles the benchmark will take to execute. However, there are several counter-exam-
ples. For instance, the mirv-O2 instruction count for perl is 2% worse than for GCC-O2 but the
binary executes 9.6% faster. The opposite happens on go.

Category Benchmark Input

SPECint95

compress 30000 q 2131

gcc regclass.i

go 9 9 null.in

ijpeg specmun.ppm, -compression.quality 25, other args as in training run

li boyer.lsp (reference input)

m88ksim ctl.lit (train input)

perl jumble.pl < jumble.in, dictionary up to ’angeline’ only

vortex 250 parts and 1000 people, other variables scaled accordingly

SPECfp2000
art -scanfile c756hel.in -trainfile1 a10.img -stride 2 -startx 134 -starty

220 -endx 139 -endy 225 -objects 1 (test input)

equake < inp.in (test input)

SPECint2000

gzip input.compressed 1 (test input)

mcf inp.in (test input)

vortex 250 parts and 1000 people, other variables scaled accordingly

vpr
net.in arch.in place.in route.out -nodisp -route_only -
route_chan_width 15 -pres_fac_mult 2 -acc_fac 1 -
first_iter_pres_fac 4 -initial_pres_fac 8 (test input)

Table 3. Description of benchmark inputs.

March 29, 2000 12:56 pm 5

5.2 Comparing SPEC95 to SPEC00

There are several characteristics that differentiate SPEC95 from SPEC00. IPC ranges
from 1 to 2 for SPEC95 and 0.6 to 1.8 for SPEC00. The average number of instructions per
branch is 4 to 6 for SPEC95 and 4 to 8 for SPEC00 (ignoring ijpeg and the unoptimized binaries).

SPEC00 instruction cache miss rates are very low except for the vortex benchmark. The
instruction cache simulated in this work is 16KB. The floating point benchmarks art and equake
have very small source code – each is only one source file and have 1270 and 1513 lines of source
code, respectively. The integer benchmark mcf is similarly small at 2412 lines of code. These
benchmarks are similar to compress, ijpeg, and li95 in the SPEC95 suite. The other SPEC95
benchmarks have a much higher miss ratio than SPEC00. SPEC00 vortex has slightly higher miss
rate than SPEC95 version of vortex.

SPEC00 data cache miss rates are much higher than SPEC95. Whereas SPEC95 miss rates
are generally less than 2% (5% for compress), SPEC00 miss rates are usually around 4%. art is a
particularly notable example with up to a 40% miss rate. Within a given compiler, optimization
generally makes the data miss rate worse. This is to be expected as optimizations cause more effi-
cient use of registers, thus eliminating the “easy” load and store operations and leaving those that
are essential to the algorithm. A prime example of this is the art benchmark, where the data cache
miss rate increases from 15% to 40% as optimizations are enabled from -O0 to -O2. At the same
time, however, the number of data references is cut by a factor of three. The low fruit has been
harvested and the “essential” memory accesses remain in the benchmark. The unified L2 cache
suffers a higher miss rate in SPEC00 as well.

The SPEC00 binaries presented here are much smaller than the binaries for SPEC95. This
is one reason that the instruction cache performs so much better for SPEC00. On the other hand,
the instruction window is much busier in the SPEC00 than it is in SPEC95 as shown in the regis-
ter-update-unit utilization graph. One might expect smaller programs to make less usage of the
instruction window, but because of the high data cache miss rates it appears that instructions are
held up longer in the window.

To summarize the differences between SPEC00 and SPEC95, we saw that IPC and data
cache performance were lower for the newer benchmarks, but that these programs exercised the
instruction cache less because of their smaller code size. This points out the importance of select-
ing the appropriate set of benchmarks for a given architectural study. Instruction cache studies
should probably avoid many of the SPEC00 benchmarks because they do not stress the instruction
cache. On the other hand, data cache studies would emphasize SPEC00 because it strains the data
side of the caching system much more than SPEC95. SPEC00 also seems to require a bigger
instruction window to avoid window-full stalls. The two suites together seem to provide a nice
complement of characteristics; most studies should use both suites.

5.3 Comparing Optimization Characteristics

MIRV and GCC optimizations exhibit similar characteristics across most of the bench-
marks but are there exceptions. For example, -O2 optimization usually produces code that runs
slightly faster than -O1 code. However, in the case of the vortex benchmark, -O2 code is slightly
worse than -O1 code for MIRV. This is due to register promotion which in this case increases the
register pressure to the point of introducing additional spilling code.

March 29, 2000 12:56 pm 6

Branch prediction accuracy is generally much worse for unoptimized binaries. One reason
for this is simply the larger number of branches that are executed (20% fewer branches are exe-
cuted in -O2 than in -O0). For both SPEC95 and SPEC00, prediction accuracies range from
roughly 82% to 98% and usually optimizations increase prediction accuracy by 4% or more.

GCC optimizations usually increase the number of instructions retired per cycle (IPC) but
for MIRV the opposite is the case.

Both compilers typically demonstrate a reduction in instruction-cache miss rate with opti-
mizations enabled. For vortex, MIRV optimizations also result in an increase in instruction cache
miss rate but GCC optimizations actually improve instruction cache performance for this bench-
mark. For the li benchmark, the reverse occurs.

6. Obtaining and Installing the Binaries

The version 1 binaries used to produce the data in this report are available on the MIRV
website [1], including the binaries supplied on the SimpleScalar website [2]. The README file
there explains how to install the binaries.

7. Conclusion

This report has introduced the MIRV compiler. As its performance improves, we encour-
age architecture researchers to use these binaries in conjunction with the SimpleScalar simulation
environment as examples of highly optimized programs. As they evolve, these will include
advanced optimizations that are not available in GCC and so should be more representative of
state-of-the-art compilation techniques.

Acknowledgments

This work was supported by DARPA grant DABT63-97-C-0047. Simulations were per-
formed on computers donated through the Intel Education 2000 Grant.

References

[1] http://www.eecs.umich.edu/mirv

[2] ftp://ftp.cs.wisc.edu/sohi/Code/simplescalar/simplebench.little.tar

[3] Preston Briggs. Register Allocation via Graph Coloring. Rice University, Houston, Texas,
USA. Tech. Report. April, 1992.

[4] Douglas C. Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0. Univer-
sity of Wisconsin, Madison Tech. Report. June, 1997.

[5] Standard Performance Evaluation Corporation. SPEC CPU95. http://www.spec.org/osg/
cpu95/, Warrenton, Virginia, 1995.

[6] Standard Performance Evaluation Corporation. SPEC CPU2000. http://www.spec.org/osg/

March 29, 2000 12:56 pm 7

cpu2000/, Warrenton, Virginia, 2000.

[7] http://arch.cs.ucdavis.edu/RAD/gcc-2.7.2.3.ss.tar.gz

[8] http://sourceware.cygnus.com/binutils/

March 29, 2000 12:56 pm 8

Appendix A. MIRV Optimizations

Frontend Backend
Optimize

Level
Filter Applied

Optimize
Level

Filter Applied

-O2 -fscalReplAggr -O1 -fpeephole0

-O3 -fcallGraph -O1 -fpeephole1

-O3 -finline -O1 -fblockClean

-O3 -ffunctCleaner -O1 -fcse

-O2 -floopUnroll -O1 -fcopy_propagation

-O1 -farrayToPointer -O1 -fconstant_propagation

-O1 -floopInversion -O1 -fdead_code_elimination

-O1 -fconstantFold -O1 -fpeephole0

-O1 -fpropagation -O1 -fpeephole1

-O1 -freassociation -O1 -fcse

-O1 -fconstantFold -O1 -fcopy_propagation

-O1 -farithSimplify -O1 -fconstant_propagation

-O2 -fregPromote -O1 -fdead_code_elimination

-O1 -fdeadCode -O1 -fpeephole0

-O1 -floopInduction -O1 -fpeephole1

-O1 -fLICodeMotion -O1 -flist_scheduler

-O1 -fCSE -O0 -freg_alloc

-O1 -fpropagation -O1 -flist_scheduler_aggressive

-O1 -fCSE -O1 -fpeephole0

-O1 -farithSimplify -O1 -fpeephole1

-O1 -fconstantFold -O1 -fcselocal

-O1 -fpropagation -O1 -fcopy_propagation

-O4 -fLICodeMotion -O1 -fdead_code_elimination

-O1 -farithSimplify -O1 -fpeephole1

-O1 -fconstantFold -O1 -fblockClean

-O1 -fstrengthReduction -O1 -fleafopt

-O2 -fscalReplAggr

-O1 -farithSimplify

-O1 -fdeadCode

-O1 -fcleaner

Table 4. Order of optimization filter application in MIRV. Since the system is based on MIRV-to-
MIRV filters, filters can easily be run more than once, as the table shows. The frontend filters
operate on the MIRV high-level IR while the backend filters operate on a quad-type low-level IR.

March 29, 2000 12:56 pm 9

Appendix B. GCC Optimizations

The table shows the optimization sequence when ‘-O3 -funroll-loops’ is turned on. The
following flags are enabled: ‘-fdefer-pop -fomit-frame-pointer -fcse-follow-jumps -fcse-skip-
blocks -fexpensive-optimizations -fthread-jumps -fstrength-reduce -funroll-loops -fpeephole -
fforce-mem -ffunction-cse functions -finline -fcaller-saves -fpcc-struct-return -frerun-cse-after-
loop -fschedule-insns -fschedule-insns2 -fcommon -fgnu-linker -mgas -mgpOPT -mgpopt’. The
table is somewhat incomplete because of the lack of documentation on GCC internal operations.

Optimization Applied
jump optimization

cse

jump optimization

loop invariant code motion

strength reduction (induction variables)

loop unroll

cse

coalescing

scheduling (first pass)

register allocation (local, then global)

insert prologue and epilogue code

sheduling (second pass)

branch optimizations (delayed and shortening)

jump opitmization

dead-code elimination

Table 5. Optimization flags in GCC 2.7.2.3/PISA. The GCC compiler is
flag based, meaning that an optimization is either on or off. Multiple
invocations of an optimization require a special flag (e.g. -frerun-cse-
after-loop).

March 29, 2000 12:56 pm 10

Appendix C. SPEC95 Results
Retired Dynamic Instructions

0

50

100

150

200

250

300

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m88

ks
im

 p

er
l

 vo

rte
x

In
st

ru
ct

io
n

s
(m

ill
io

n
s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Memory References

0

20

40

60

80

100

120

140

160

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m88

ks
im

 p

er
l

 vo

rte
x

R
ef

er
en

ce
s

(m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Loads

0

10

20

30

40

50

60

70

80

90

100

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m88

ks
im

 p

er
l

 vo

rte
x

L
o

ad
s

(m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Stores

0

5

10

15

20

25

30

35

40

45

50

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m88

ks
im

 p

er
l

 vo

rte
x

S
to

re
s

(m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

IPC

0.0

0.5

1.0

1.5

2.0

2.5

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m88

ks
im

 p

er
l

 vo

rte
x

IP
C

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Branches

0

10

20

30

40

50

60

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m88

ks
im

 p

er
l

 vo

rte
x

B
ra

n
ch

es
 (

m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Average Instructions Per Branch

0

2

4

6

8

10

12

14

16

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m88

ks
im

 p

er
l

 vo

rte
x

IP
B

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Execution Cycles

0

50

100

150

200

250

300

350

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

 l

i95

m

88
ks

im

pe
rl

 vo

rte
x

C
yc

le
s

(m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

March 29, 2000 12:56 pm 11

L1 Data Cache Miss Rate

0%

1%

2%

3%

4%

5%

6%

 g

cc
95

co
mpr

es
s9

5

 g
o

 ij

pe
g

 l

i95

m

88
ks

im

pe
rl

 vo

rte
x

M
is

s
R

at
e

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Text Size 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 g

cc
95

co
mpr

es
s9

5

 g
o

 ij

pe
g

 l

i95

m

88
ks

im

pe
rl

 vo

rte
x

B
yt

es
 (

m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Branch Prediction Accuracy

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m88

ks
im

 p

er
l

 vo

rte
x

A
cc

u
ra

cy

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

L1 Instruction Cache Miss Rate

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

 g

cc
95

co
mpr

es
s9

5

 g
o

 ij

pe
g

 l

i95

m

88
ks

im

pe
rl

 vo

rte
x

M
is

s
R

at
e

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

L2 Miss Rate

0%

2%

4%

6%

8%

10%

12%

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

li9
5

m

88
ks

im

pe
rl

 vo

rte
x

M
is

s
R

at
e

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Percent Cycles RUU Full

0%

10%

20%

30%

40%

50%

60%

70%

 g

cc
95

co
m

pr
es

s9
5

 g
o

 ij

pe
g

 l

i95

m

88
ks

im

pe
rl

 vo

rte
x

P
er

ce
n

ta
g

e

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

March 29, 2000 12:56 pm 12

Graph Special Notes
Execution Cycles sim_cycle

Retired Dynamic Instructions sim_num_insn

Retired Dynamic Memory References sim_num_refs

Retired Dynamic Loads sim_num_loads

Retired Dynamic Stores sim_num_stores

Retired Dynamic Branches sim_num_branches

IPC sim_IPC

Average Instructions Per Branch sim_IPB

Branch Prediction Accuracy bpred_bimod.bpred_dir_rate

L1 Instruction Cache Miss Rate il1.miss_rate

L1 Data Cache Miss Rate dl1.miss_rate

Text Size 2

This is computed as bfd_section_size(abfd, sect) of
the “.text” section in the binary. This is slightly
more accurate than ld_text_size. SimpleScalar
instructions are 64-bits each.

L2 Miss Rate ul2.miss_rate

Percent Cycles RUU Full ruu_full

Table 6. Explanation of the graphs in Appendices C and D. Statistics without further
explanation are simply the statistic that is produced by the default sim-outorder simulator.

March 29, 2000 12:56 pm 13

Appendix D. SPEC00 Results
Execution Cycles

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 art00 equake00 gzip00 mcf00 vortex00 vpr00

C
yc

le
s

(m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Stores

0

50

100

150

200

250

300

350

400

450

500

 art00 equake00 gzip00 mcf00 vortex00 vpr00

S
to

re
s

(m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Instructions

0

1000

2000

3000

4000

5000

6000

7000

 art00 equake00 gzip00 mcf00 vortex00 vpr00

In
st

ru
ct

io
n

s
(m

ill
io

n
s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Memory References

0

500

1000

1500

2000

2500

3000

3500

 art00 equake00 gzip00 mcf00 vortex00 vpr00

R
ef

er
en

ce
s

(m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Loads

0

500

1000

1500

2000

2500

3000

 art00 equake00 gzip00 mcf00 vortex00 vpr00

L
o

ad
s

(m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Retired Dynamic Branches

0

100

200

300

400

500

600

 art00 equake00 gzip00 mcf00 vortex00 vpr00

B
ra

n
ch

es
 (

m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

IPC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 art00 equake00 gzip00 mcf00 vortex00 vpr00

IP
C

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Average Instructions Per Branch

0

2

4

6

8

10

12

14

 art00 equake00 gzip00 mcf00 vortex00 vpr00

IP
B

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

March 29, 2000 12:56 pm 14

L1 Instruction Cache Miss Rate

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

 art00 equake00 gzip00 mcf00 vortex00 vpr00

M
is

s
R

at
e

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Text Size 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 art00 equake00 gzip00 mcf00 vortex00 vpr00

B
yt

es
 (

m
ill

io
n

s)

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Branch Prediction Accuracy

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

 art00 equake00 gzip00 mcf00 vortex00 vpr00

A
cc

u
ra

cy

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

L2 Miss Rate

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

 art00 equake00 gzip00 mcf00 vortex00 vpr00

M
is

s
R

at
e

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

Percent Cycles RUU Full

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 art00 equake00 gzip00 mcf00 vortex00 vpr00

P
er

ce
n

ta
g

e

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

L1 Data Cache Miss Rate

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

 art00 equake00 gzip00 mcf00 vortex00 vpr00

M
is

s
R

at
e

SSsup
gccO0
gccO1
gccO2
mirvO0
mirvO1
mirvO2

March 29, 2000 12:56 pm 15

Appendix E. Dynamic Instruction Mix Results

Dynamic Instruction Mix

0

50

100

150

200

250

300

gc
c9

5-
S

S
su

p

gc
c9

5-
gc

cO
0

gc
c9

5-
gc

cO
1

gc
c9

5-
gc

cO
2

gc
c9

5-
m

irv
O

0

gc
c9

5-
m

irv
O

1

gc
c9

5-
m

irv
O

2

co
m

pr
es

s9
5-

S
S

su
p

co
m

pr
es

s9
5-

gc
cO

0

co
m

pr
es

s9
5-

gc
cO

1

co
m

pr
es

s9
5-

gc
cO

2

co
m

pr
es

s9
5-

m
irv

O
0

co
m

pr
es

s9
5-

m
irv

O
1

co
m

pr
es

s9
5-

m
irv

O
2

go
-S

S
su

p

go
-g

cc
O

0

go
-g

cc
O

1

go
-g

cc
O

2

go
-m

irv
O

0

go
-m

irv
O

1

go
-m

irv
O

2

ijp
eg

-S
S

su
p

ijp
eg

-g
cc

O
0

ijp
eg

-g
cc

O
1

ijp
eg

-g
cc

O
2

ijp
eg

-m
irv

O
0

ijp
eg

-m
irv

O
1

ijp
eg

-m
irv

O
2

D
yn

am
ic

 In
st

ru
ct

io
n

s
(m

ill
io

n
s) other

branches

stores

loads

Dynamic Instruction Mix

0

50

100

150

200

250

300

350

400

450

500

li9
5-

S
S

su
p

li9
5-

gc
cO

0

li9
5-

gc
cO

1

li9
5-

gc
cO

2

li9
5-

m
irv

O
0

li9
5-

m
irv

O
1

li9
5-

m
irv

O
2

m
88

ks
im

-S
S

su
p

m
88

ks
im

-g
cc

O
0

m
88

ks
im

-g
cc

O
1

m
88

ks
im

-g
cc

O
2

m
88

ks
im

-m
irv

O
0

m
88

ks
im

-m
irv

O
1

m
88

ks
im

-m
irv

O
2

pe
rl-

S
S

su
p

pe
rl-

gc
cO

0

pe
rl-

gc
cO

1

pe
rl-

gc
cO

2

pe
rl-

m
irv

O
0

pe
rl-

m
irv

O
1

pe
rl-

m
irv

O
2

vo
rt

ex
-S

S
su

p

vo
rt

ex
-g

cc
O

0

vo
rt

ex
-g

cc
O

1

vo
rt

ex
-g

cc
O

2

vo
rt

ex
-m

irv
O

0

vo
rt

ex
-m

irv
O

1

vo
rt

ex
-m

irv
O

2

D
yn

am
ic

 In
st

ru
ct

io
n

s
(m

ill
io

n
s)

other

branches

stores

loads

March 29, 2000 12:56 pm 16

Dynamic Instruction Mix

0

1000

2000

3000

4000

5000

6000

7000

ar
t0

0-
S

S
su

p

ar
t0

0-
gc

cO
0

ar
t0

0-
gc

cO
1

ar
t0

0-
gc

cO
2

ar
t0

0-
m

irv
O

0

ar
t0

0-
m

irv
O

1

ar
t0

0-
m

irv
O

2

eq
ua

ke
00

-S
S

su
p

eq
ua

ke
00

-g
cc

O
0

eq
ua

ke
00

-g
cc

O
1

eq
ua

ke
00

-g
cc

O
2

eq
ua

ke
00

-m
irv

O
0

eq
ua

ke
00

-m
irv

O
1

eq
ua

ke
00

-m
irv

O
2

gz
ip

00
-S

S
su

p

gz
ip

00
-g

cc
O

0

gz
ip

00
-g

cc
O

1

gz
ip

00
-g

cc
O

2

gz
ip

00
-m

irv
O

0

gz
ip

00
-m

irv
O

1

gz
ip

00
-m

irv
O

2

D
yn

am
ic

 In
st

ru
ct

io
n

s
(m

ill
io

n
s) other

branches

stores

loads

Dynamic Instruction Mix

0

200

400

600

800

1000

1200

1400

1600

m
cf

00
-S

S
su

p

m
cf

00
-g

cc
O

0

m
cf

00
-g

cc
O

1

m
cf

00
-g

cc
O

2

m
cf

00
-m

irv
O

0

m
cf

00
-m

irv
O

1

m
cf

00
-m

irv
O

2

vo
rt

ex
00

-S
S

su
p

vo
rt

ex
00

-g
cc

O
0

vo
rt

ex
00

-g
cc

O
1

vo
rt

ex
00

-g
cc

O
2

vo
rt

ex
00

-m
irv

O
0

vo
rt

ex
00

-m
irv

O
1

vo
rt

ex
00

-m
irv

O
2

vp
r0

0-
S

S
su

p

vp
r0

0-
gc

cO
0

vp
r0

0-
gc

cO
1

vp
r0

0-
gc

cO
2

vp
r0

0-
m

irv
O

0

vp
r0

0-
m

irv
O

1

vp
r0

0-
m

irv
O

2

D
yn

am
ic

 In
st

ru
ct

io
n

s
(m

ill
io

n
s) other

branches

stores

loads

March 29, 2000 12:56 pm 17

Appendix F. Detailed Results

Table F.1. Number of execution cycles.

Table F.2. Number of dynamic instructions.

cycles SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 133,198,943 200,481,213 137,146,750 135,925,630 199,353,822 153,676,261 155,570,866

compress95 74,128,332 108,056,529 76,954,251 74,120,871 101,465,965 73,727,346 71,995,564

 go 144,963,348 289,772,154 153,516,403 143,099,654 177,020,674 136,487,401 144,615,493

 ijpeg 60,867,889 116,708,870 62,016,032 60,362,407 68,882,890 59,562,890 59,092,026

 li95 111,990,825 198,753,658 123,987,875 122,404,069 171,851,043 126,223,376 119,688,571

 m88ksim 73,873,102 203,182,527 87,329,609 73,359,777 143,770,331 97,886,738 100,992,063

 perl 91,785,556 118,283,857 104,616,089 94,904,097 99,226,691 84,818,970 88,070,759

 vortex 144,218,250 222,066,885 150,370,197 159,279,949 211,559,470 164,531,061 167,160,492

 art00 0 8,183,059,761 3,932,008,214 3,691,442,317 5,664,033,174 3,896,938,836 3,978,797,881

 equake00 0 1,983,885,959 1,228,292,079 1,129,167,092 1,592,383,199 1,246,462,154 1,097,503,110

 gzip00 0 1,458,535,132 741,395,794 729,502,893 995,964,507 789,611,147 830,910,020

 mcf00 0 300,632,079 185,845,520 180,043,497 216,663,192 176,769,988 176,698,141

 vortex00 0 222,071,242 150,275,946 159,022,773 211,142,086 165,024,308 166,842,914

 vpr00 0 960,620,460 497,678,504 497,481,148 667,190,527 513,963,243 505,800,410

dynInsn SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 121,291,882 173,501,299 124,358,856 122,048,567 165,479,820 136,597,068 135,902,282

compress95 124,007,203 202,848,107 127,320,796 123,989,867 182,370,014 128,062,400 124,117,434

 go 132,918,691 268,225,327 146,032,235 134,765,723 179,700,961 131,900,396 132,506,089

 ijpeg 123,953,291 221,597,997 125,493,959 124,300,853 138,774,682 114,940,431 114,701,757

 li95 173,968,882 277,800,863 176,326,885 173,607,213 234,372,535 177,251,019 177,236,548

 m88ksim 119,317,263 214,992,826 124,426,497 119,670,756 184,779,644 122,942,402 123,731,658

 perl 108,713,654 129,120,457 110,119,889 109,608,239 127,682,949 111,669,505 111,731,966

 vortex 153,682,491 207,233,844 157,864,689 157,918,608 205,467,402 168,991,471 168,981,011

 art00 0 6,269,718,143 2,270,057,265 2,024,827,366 3,883,917,755 2,131,438,659 2,137,494,813

 equake00 0 2,984,585,045 1,502,806,229 1,459,964,520 1,967,861,216 1,519,585,190 1,382,962,709

 gzip00 0 2,149,944,982 1,308,126,550 1,276,220,491 1,840,361,191 1,448,658,876 1,531,669,686

 mcf00 0 405,724,021 209,934,857 202,016,959 277,494,737 200,422,476 200,424,704

 vortex00 0 207,393,055 158,021,459 158,075,450 205,626,182 169,148,892 169,138,288

 vpr00 0 1,510,303,511 710,968,666 710,087,319 1,013,762,258 722,299,249 708,193,105

March 29, 2000 12:56 pm 18

Table F.3. Number of dynamic memory references.

Table F.4. Number of dynamic load instructions.

Table F.5. Number of dynamic store instructions.

dynRefs SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 49,334,757 73,873,363 49,352,753 49,361,737 58,200,460 54,892,416 55,461,383

compress95 43,664,405 71,087,446 45,453,686 43,616,577 63,318,786 46,089,721 43,413,349

 go 36,716,606 82,177,020 39,763,447 38,071,493 44,760,506 42,363,336 43,109,104

 ijpeg 31,856,721 86,688,154 31,571,618 31,708,996 34,770,808 34,330,551 34,393,731

 li95 74,677,881 141,546,686 74,055,835 72,648,246 96,516,071 77,473,882 77,450,411

 m88ksim 37,052,641 94,852,549 37,360,061 37,214,551 54,389,895 39,072,683 39,001,729

 perl 49,025,762 59,632,004 49,364,718 49,074,054 54,951,417 48,596,001 48,677,929

 vortex 81,564,028 117,310,095 84,338,484 84,884,654 111,006,867 93,174,770 93,165,111

 art00 0 2,953,356,736 572,664,757 562,834,944 1,561,619,480 748,113,677 668,403,628

 equake00 0 1,146,908,255 485,738,408 494,960,252 636,607,655 526,424,173 510,722,043

 gzip00 0 760,957,701 410,885,840 402,533,982 522,098,333 460,619,365 533,499,622

 mcf00 0 191,667,384 77,491,719 77,874,104 100,389,133 76,623,066 76,623,066

 vortex00 0 117,424,086 84,450,640 84,996,918 111,120,145 93,287,517 93,277,714

 vpr00 0 769,568,893 290,026,962 285,158,550 463,760,059 320,832,075 308,995,984

loads SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 31,872,008 51,867,054 32,314,881 31,743,080 39,225,924 35,149,405 35,430,480

compress95 26,561,283 44,501,502 28,354,482 26,517,372 39,664,588 28,257,749 26,602,114

 go 27,464,121 64,392,437 30,374,262 28,144,373 34,362,737 30,791,030 31,143,981

 ijpeg 22,283,318 63,619,861 22,431,106 22,204,793 25,129,726 24,116,600 24,135,665

 li95 45,493,244 95,161,631 45,743,456 44,478,428 60,466,443 47,584,005 47,570,254

 m88ksim 22,795,190 67,768,522 23,053,841 22,877,056 34,470,734 23,987,331 23,949,875

 perl 29,091,584 36,461,407 29,386,498 29,019,370 33,099,127 28,844,092 28,905,023

 vortex 43,439,863 70,196,006 45,404,268 45,113,080 65,182,812 50,703,090 50,701,232

 art00 0 2,487,176,786 427,202,096 417,372,265 1,405,139,878 598,432,397 518,482,248

 equake00 0 960,634,992 369,058,638 371,111,611 517,248,426 393,834,619 381,554,065

 gzip00 0 538,118,773 293,914,705 281,592,756 377,580,781 323,275,044 360,690,739

 mcf00 0 129,482,527 44,316,226 44,692,447 56,798,038 43,412,222 43,412,222

 vortex00 0 70,242,839 45,449,812 45,158,651 65,229,268 50,749,024 50,747,094

 vpr00 0 611,078,869 211,472,979 206,577,571 370,396,557 241,442,330 227,526,190

stores SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 17,462,749 22,006,309 17,037,872 17,618,657 18,974,536 19,743,011 20,030,903

compress95 17,103,122 26,585,944 17,099,204 17,099,205 23,654,198 17,831,972 16,811,235

 go 9,252,485 17,784,583 9,389,185 9,927,120 10,397,769 11,572,306 11,965,123

 ijpeg 9,573,403 23,068,293 9,140,512 9,504,203 9,641,082 10,213,951 10,258,066

 li95 29,184,637 46,385,055 28,312,379 28,169,818 36,049,628 29,889,877 29,880,157

 m88ksim 14,257,451 27,084,027 14,306,220 14,337,495 19,919,161 15,085,352 15,051,854

 perl 19,934,178 23,170,597 19,978,220 20,054,684 21,852,290 19,751,909 19,772,906

 vortex 38,124,165 47,114,089 38,934,216 39,771,574 45,824,055 42,471,680 42,463,879

 art00 0 466,179,950 145,462,661 145,462,679 156,479,602 149,681,280 149,921,380

 equake00 0 186,273,263 116,679,770 123,848,641 119,359,229 132,589,554 129,167,978

 gzip00 0 222,838,928 116,971,135 120,941,226 144,517,552 137,344,321 172,808,883

 mcf00 0 62,184,857 33,175,493 33,181,657 43,591,095 33,210,844 33,210,844

 vortex00 0 47,181,247 39,000,828 39,838,267 45,890,877 42,538,493 42,530,620

 vpr00 0 158,490,024 78,553,983 78,580,979 93,363,502 79,389,745 81,469,794

March 29, 2000 12:56 pm 19

Table F.6. Number of dynamic branch instructions.

Table F.7. Total number of instructions executed (speculative and non-speculative)

branches SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 24,419,621 32,075,384 24,911,740 24,768,175 31,987,107 27,208,037 26,912,338

compress95 22,449,938 29,619,589 22,447,525 22,447,525 29,375,803 23,225,364 22,761,010

 go 20,226,745 26,490,233 20,469,933 20,427,880 25,320,029 20,972,690 20,919,284

 ijpeg 11,147,615 16,411,284 11,200,098 11,196,216 16,144,036 11,361,376 10,258,101

 li95 39,563,998 56,677,574 40,721,926 40,494,851 51,263,724 41,047,678 41,047,678

 m88ksim 23,229,288 32,048,286 23,644,444 23,633,461 33,171,563 24,432,348 22,807,367

 perl 20,807,945 24,539,960 21,121,515 21,051,780 24,802,448 21,758,211 21,701,676

 vortex 24,386,128 29,994,803 23,970,139 23,940,982 31,815,320 27,718,552 27,718,547

 art00 0 496,824,799 305,175,270 286,672,217 497,835,745 340,464,793 245,074,081

 equake00 0 245,887,275 194,340,192 194,287,976 237,936,428 196,680,682 172,950,878

 gzip00 0 315,190,379 237,097,158 237,096,998 304,468,516 246,300,098 246,142,642

 mcf00 0 60,507,881 44,050,368 43,662,048 56,701,362 44,567,160 44,566,440

 vortex00 0 30,006,871 23,981,934 23,952,777 31,827,429 27,730,466 27,730,461

 vpr00 0 134,367,823 102,717,592 102,668,076 131,409,609 102,297,479 101,097,016

totalinsn SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 142,731,598 197,785,893 146,101,963 143,256,471 191,364,706 160,882,289 159,878,583

compress95 145,313,204 229,548,689 152,356,955 145,305,225 209,208,842 151,114,523 147,488,798

 go 164,694,798 302,160,340 178,262,378 166,919,747 213,106,429 164,904,141 164,675,171

 ijpeg 132,673,455 230,974,241 134,451,425 133,029,864 147,785,767 123,363,879 123,029,721

 li95 212,072,618 320,561,618 214,215,027 207,172,196 277,786,734 225,526,301 225,799,749

 m88ksim 127,989,542 222,049,480 132,583,890 128,182,216 194,087,300 139,146,769 140,645,885

 perl 124,387,461 141,813,436 124,294,619 125,604,111 143,100,557 125,829,147 125,925,468

 vortex 157,204,562 211,428,230 161,684,192 161,403,187 209,951,844 172,990,766 172,832,047

 art00 0 6,599,861,689 2,601,964,628 2,358,665,668 4,086,289,721 2,298,462,334 2,417,414,263

 equake00 0 3,079,987,564 1,585,588,414 1,541,774,603 2,063,294,135 1,621,353,296 1,432,807,184

 gzip00 0 2,373,936,872 1,485,265,785 1,445,983,553 2,055,284,906 1,617,370,836 1,700,150,401

 mcf00 0 446,599,029 250,260,853 242,563,503 312,157,139 238,801,643 238,804,394

 vortex00 0 211,582,549 161,787,572 161,568,409 210,097,534 173,132,592 173,290,978

 vpr00 0 1,633,462,350 825,282,672 823,844,499 1,128,487,567 839,225,111 825,515,677

March 29, 2000 12:56 pm 20

Table F.8. Total number of memory references executed (speculative and non-specula-

tive).

Table F.9. Instructions per cycle.

totalrefs SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 57,644,574 82,971,897 57,441,491 57,468,393 65,405,756 63,848,148 64,271,568

compress95 51,242,289 79,852,930 55,180,437 51,199,467 72,576,616 55,207,752 52,843,584

 go 44,987,931 92,231,388 47,675,386 46,637,129 51,533,660 52,652,047 53,144,911

 ijpeg 33,743,078 88,824,590 33,280,042 33,610,579 36,390,406 36,239,829 36,373,765

 li95 89,978,781 165,736,202 87,894,372 85,331,607 114,404,632 96,624,795 96,718,638

 m88ksim 40,537,475 98,421,283 40,590,766 40,650,549 57,198,876 44,358,129 44,540,365

 perl 54,572,928 64,639,181 54,224,137 54,952,336 60,183,338 54,290,123 54,119,775

 vortex 83,117,340 119,568,855 85,989,966 86,394,959 112,849,860 94,888,095 94,848,785

 art00 0 3,122,895,929 626,774,507 640,161,117 1,658,947,251 801,274,286 751,495,150

 equake00 0 1,185,730,979 504,513,549 520,254,297 654,951,428 560,047,648 524,313,794

 gzip00 0 839,817,109 464,332,540 454,703,182 577,101,119 516,330,530 596,370,658

 mcf00 0 210,989,597 89,090,863 91,249,222 109,810,364 88,765,109 88,766,011

 vortex00 0 119,689,422 86,104,426 86,506,518 112,958,574 94,990,488 95,078,399

 vpr00 0 832,443,022 336,006,141 331,069,790 526,463,967 374,287,250 362,455,251

IPC SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 0.91 0.87 0.91 0.90 0.83 0.89 0.87

compress95 1.67 1.88 1.65 1.67 1.80 1.74 1.72

 go 0.92 0.93 0.95 0.94 1.02 0.97 0.92

 ijpeg 2.04 1.90 2.02 2.06 2.01 1.93 1.94

 li95 1.55 1.40 1.42 1.42 1.36 1.40 1.48

 m88ksim 1.62 1.06 1.42 1.63 1.29 1.26 1.23

 perl 1.18 1.09 1.05 1.15 1.29 1.32 1.27

 vortex 1.07 0.93 1.05 0.99 0.97 1.03 1.01

 art00 0.00 0.77 0.58 0.55 0.69 0.55 0.54

 equake00 0.00 1.50 1.22 1.29 1.24 1.22 1.26

 gzip00 0.00 1.47 1.76 1.75 1.85 1.83 1.84

 mcf00 0.00 1.35 1.13 1.12 1.28 1.13 1.13

 vortex00 0.00 0.93 1.05 0.99 0.97 1.03 1.01

 vpr00 0.00 1.57 1.43 1.43 1.52 1.41 1.40

March 29, 2000 12:56 pm 21

Table F.10. Instructions per branch.

Table F.11. Branch prediction accuracy.

Table F.12. L1 instruction-cache miss rate.

IPB SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 4.97 5.41 4.99 4.93 5.17 5.02 5.05

compress95 5.52 6.85 5.67 5.52 6.21 5.51 5.45

 go 6.57 10.13 7.13 6.60 7.10 6.29 6.33

 ijpeg 11.12 13.50 11.20 11.10 8.60 10.12 11.18

 li95 4.40 4.90 4.33 4.29 4.57 4.32 4.32

 m88ksim 5.14 6.71 5.26 5.06 5.57 5.03 5.43

 perl 5.22 5.26 5.21 5.21 5.15 5.13 5.15

 vortex 6.30 6.91 6.59 6.60 6.46 6.10 6.10

 art00 0.00 12.62 7.44 7.06 7.80 6.26 8.72

 equake00 0.00 12.14 7.73 7.51 8.27 7.73 8.00

 gzip00 0.00 6.82 5.52 5.38 6.04 5.88 6.22

 mcf00 0.00 6.71 4.77 4.63 4.89 4.50 4.50

 vortex00 0.00 6.91 6.59 6.60 6.46 6.10 6.10

 vpr00 0.00 11.24 6.92 6.92 7.71 7.06 7.01

BPrate SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 88.70% 87.39% 89.10% 88.96% 85.69% 88.41% 88.22%

compress95 90.00% 90.76% 90.00% 90.00% 83.99% 90.40% 90.16%

 go 81.68% 84.42% 81.87% 81.84% 82.31% 81.95% 81.72%

 ijpeg 92.61% 93.80% 92.66% 92.66% 93.10% 92.74% 92.02%

 li95 92.48% 86.91% 92.58% 92.51% 85.47% 92.40% 92.40%

 m88ksim 96.18% 89.45% 95.98% 96.40% 88.97% 94.34% 94.02%

 perl 93.34% 93.05% 93.87% 93.77% 91.61% 94.38% 94.38%

 vortex 96.80% 87.57% 96.28% 96.98% 88.57% 96.92% 97.12%

 art00 0.00% 89.58% 83.95% 82.84% 92.24% 89.77% 84.28%

 equake00 0.00% 94.93% 93.65% 93.65% 94.71% 93.69% 95.84%

 gzip00 0.00% 90.85% 93.41% 93.41% 88.35% 93.15% 93.14%

 mcf00 0.00% 85.12% 90.88% 90.88% 83.51% 90.81% 90.81%

 vortex00 0.00% 87.57% 96.27% 96.98% 88.58% 96.92% 96.73%

 vpr00 0.00% 88.46% 90.91% 90.90% 84.22% 90.71% 90.31%

IL1miss SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 6.58% 7.41% 6.71% 6.84% 7.65% 6.92% 7.11%

compress95 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

 go 4.91% 5.07% 4.50% 4.59% 4.42% 4.19% 4.82%

 ijpeg 0.42% 0.29% 0.28% 0.39% 0.46% 0.49% 0.31%

 li95 0.58% 0.54% 1.35% 1.80% 1.47% 1.28% 0.77%

 m88ksim 2.67% 7.47% 4.03% 2.72% 4.64% 3.98% 4.10%

 perl 4.48% 5.70% 6.12% 4.69% 3.72% 3.54% 3.88%

 vortex 6.98% 8.23% 7.12% 8.19% 7.89% 7.68% 7.95%

 art00 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.00%

 equake00 0.00% 0.36% 2.09% 1.26% 3.14% 1.75% 0.57%

 gzip00 0.00% 2.41% 0.00% 0.00% 0.01% 0.02% 0.01%

 mcf00 0.00% 0.09% 0.19% 0.20% 0.13% 0.19% 0.18%

 vortex00 0.00% 8.23% 7.12% 8.19% 7.89% 7.68% 7.77%

 vpr00 0.00% 0.15% 0.13% 0.14% 0.16% 0.15% 0.25%

March 29, 2000 12:56 pm 22

Table F.13. L1 data-cache miss rate.

Table F.14. Program text size (measurement 1)

Table F.15. Program text size (measurement 2, as described in Table 6).

DL1miss SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 1.54% 1.11% 1.53% 1.54% 1.39% 1.47% 1.46%

compress95 5.23% 3.32% 4.85% 5.19% 3.62% 4.90% 5.18%

 go 2.01% 1.00% 1.93% 2.05% 1.71% 1.85% 1.88%

 ijpeg 0.90% 0.36% 0.91% 0.91% 0.82% 0.84% 0.84%

 li95 1.81% 1.02% 1.82% 1.86% 1.58% 1.88% 1.88%

 m88ksim 0.72% 0.31% 0.73% 0.71% 0.50% 0.69% 0.68%

 perl 0.60% 0.61% 0.58% 0.58% 0.50% 0.55% 0.55%

 vortex 1.81% 1.28% 1.75% 1.76% 1.41% 1.61% 1.62%

 art00 0.00% 8.96% 40.73% 41.97% 15.18% 32.12% 34.55%

 equake00 0.00% 1.94% 4.38% 4.29% 3.35% 4.05% 4.18%

 gzip00 0.00% 2.50% 4.48% 4.54% 3.58% 4.01% 3.47%

 mcf00 0.00% 6.35% 12.99% 12.77% 10.31% 13.10% 13.10%

 vortex00 0.00% 1.29% 1.76% 1.77% 1.42% 1.62% 1.63%

 vpr00 0.00% 1.68% 4.02% 4.07% 2.42% 3.65% 3.71%

textSize SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 2,166,768 2,934,576 2,000,448 1,962,672 2,830,848 2,279,776 2,538,240

compress95 103,840 109,584 105,456 105,264 107,712 105,232 107,552

 go 621,600 934,112 581,824 566,400 678,432 561,280 620,144

 ijpeg 396,976 520,848 364,752 365,904 414,704 377,280 474,784

 li95 180,640 207,792 176,528 176,160 199,536 182,640 183,680

 m88ksim 286,864 383,024 289,712 286,608 354,784 308,736 328,192

 perl 535,584 627,024 506,992 503,008 621,392 559,184 568,320

 vortex 990,928 1,195,328 977,424 966,704 1,132,080 1,017,072 1,017,200

 art00 0 131,504 120,384 119,456 123,328 120,384 144,304

 equake00 0 154,048 125,904 126,624 134,976 129,232 159,888

 gzip00 0 230,448 201,264 200,768 214,720 200,512 213,632

 mcf00 0 127,056 114,176 114,400 117,872 115,056 115,600

 vortex00 0 1,195,328 977,424 966,704 1,132,080 1,017,072 1,017,152

 vpr00 0 439,328 322,768 314,320 363,040 328,336 437,968

textSize2 SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 2,166,320 2,934,128 2,000,000 1,962,224 2,830,400 2,279,328 2,537,792

compress95 103,392 109,136 105,008 104,816 107,264 104,784 107,104

 go 621,152 933,664 581,376 565,952 677,984 560,832 619,696

 ijpeg 396,528 520,400 364,304 365,456 414,256 376,832 474,336

 li95 180,192 207,344 176,080 175,712 199,088 182,192 183,232

 m88ksim 286,416 382,576 289,264 286,160 354,336 308,288 327,744

 perl 535,136 626,576 506,544 502,560 620,944 558,736 567,872

 vortex 990,480 1,194,880 976,976 966,256 1,131,632 1,016,624 1,016,752

 art00 0 131,056 119,936 119,008 122,880 119,936 143,856

 equake00 0 153,600 125,456 126,176 134,528 128,784 159,440

 gzip00 0 230,000 200,816 200,320 214,272 200,064 213,184

 mcf00 0 126,608 113,728 113,952 117,424 114,608 115,152

 vortex00 0 1,194,880 976,976 966,256 1,131,632 1,016,624 1,016,704

 vpr00 0 438,880 322,320 313,872 362,592 327,888 437,520

March 29, 2000 12:56 pm 23

Table F.16. Unified L2 miss rate.

Table F.17. Percentage of time RUU is full.

UL2miss SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 2.17% 2.14% 2.02% 2.01% 2.28% 2.24% 2.35%

compress95 9.55% 9.36% 9.69% 9.67% 9.60% 9.63% 9.60%

 go 5.77% 11.20% 6.79% 5.89% 7.44% 5.97% 6.13%

 ijpeg 6.31% 9.06% 7.67% 6.37% 5.82% 6.03% 8.68%

 li95 0.10% 0.10% 0.07% 0.06% 0.06% 0.07% 0.09%

 m88ksim 3.04% 0.67% 2.01% 3.00% 1.25% 1.93% 1.85%

 perl 0.75% 0.54% 0.62% 0.73% 0.80% 0.94% 0.86%

 vortex 2.70% 1.99% 2.51% 2.18% 2.41% 2.10% 2.02%

 art00 0.00% 48.12% 48.12% 48.12% 48.10% 48.10% 48.12%

 equake00 0.00% 19.08% 11.51% 15.20% 7.37% 12.55% 20.65%

 gzip00 0.00% 1.08% 3.09% 3.07% 3.32% 3.09% 3.29%

 mcf00 0.00% 18.57% 18.52% 18.48% 18.61% 18.48% 18.51%

 vortex00 0.00% 1.98% 2.47% 2.11% 2.37% 2.29% 2.38%

 vpr00 0.00% 9.42% 10.22% 10.22% 9.72% 10.19% 9.74%

RUUFull SSsup gccO0 gccO1 gccO2 mirvO0 mirvO1 mirvO2

 gcc95 10.85% 10.67% 11.22% 10.18% 12.79% 10.27% 10.03%

compress95 52.81% 52.03% 51.37% 52.79% 41.33% 49.48% 51.12%

 go 23.26% 27.97% 27.20% 24.06% 22.93% 21.98% 20.38%

 ijpeg 58.00% 49.83% 61.33% 57.70% 60.23% 43.31% 47.60%

 li95 28.32% 21.41% 25.25% 24.63% 22.34% 23.61% 24.52%

 m88ksim 20.21% 7.28% 21.58% 18.90% 23.88% 21.37% 23.52%

 perl 10.44% 8.43% 8.19% 10.70% 12.80% 11.60% 10.33%

 vortex 9.90% 4.34% 9.19% 7.65% 4.96% 5.90% 5.63%

 art00 0.00% 27.55% 88.72% 90.29% 78.48% 74.73% 81.46%

 equake00 0.00% 61.10% 43.80% 40.57% 33.83% 36.70% 40.26%

 gzip00 0.00% 32.27% 64.87% 62.00% 53.08% 53.88% 46.69%

 mcf00 0.00% 31.31% 58.99% 55.55% 32.76% 55.36% 55.40%

 vortex00 0.00% 4.30% 9.05% 7.54% 4.84% 5.86% 5.74%

 vpr00 0.00% 39.11% 60.04% 61.02% 37.09% 46.48% 44.41%

